CSSE 220 Day 2

Course Intro
Instructor Intro

Java Intro, Continued




Your questions about ...

» The syllabus
» Java
» etcC.

» To submit your homework, do Team > Share

> Your repository name is
csse220-200830-username

> Use your old SVN password.




Laptops in the Classroom

» You will generally need to use your
laptops during at least a portion of
every class period. Please be sure to

bring your laptop, a power brick, and
a network cable to class.

» You, me, and YouTube

> Turn off IM and email software and only
use other software for things directly
related to class

- If you choose to use non-class-related
software or websites during class, you
sit in the next-to-last row.




More annouhcements

» Cell Phones
- please set ringers to silent or quiet.
* Minimize class disruptions.
- But sometimes there are emergencies.
» Personal needs

- |If you need to leave class for a drink of water, a trip
to the bathroom, or anything like that, you need not
ask me. Just try to minimize disruptions.

» Please be here and have your computer up
- and running by 8:05.




Bonus points for reporting bugs

» In the textbook

» In any of my materials.

» Use the Bug Report Forum on ANGEL
» More details in the Syllabus.




Plagiarism

» Plagiarism has sometimes been a problem in
courses at this level. | won't look hard for it,
but if | do happen to find it, watch out!

» Of course, copying from the work of previous
terms' students is just as bad as copying from
this term's students.

» If you use someone else's ideas, attribute
them.

» If you use someone else's code, don't submit
it!




Penalty for cheating

vV Vv vV Vv

do it.

See the syllabus
Get help in ways that increase understanding
Don’t get or give help that bypasses learning.

My usual penalty for plagiarism or cheating.

- If the assignment or exam is worth N points, your score
will be -N (not zero)

> Why?

In cases of electronic copying (and perhaps other
cases), the penalty may apply to both giver and
receiver.

If you are not sure whether a certain kind of
collaboration is appropriate, ask me before you



Some major emphases of 220

Reinforce and extend OO ideas from 120
> Major emphasis on inheritance

> GUI programming using Java Swing

Data Structures

Introduce Algorithm efficiency analysis
Abstract Data Types

Specifying and using standard Data Structures
Implementing simple data structures (lists)

Recursion
Simple Sorting and searching
A few additional Software Engineering concepts

v

v

(e] o o

(o]

v Vv

>




What will | spend my time doing?

» Larger programming problems, mostly outside of
class.

- Exploring the JDK documentation to find the classes and
methods that you need.

- Debugging!
- Reviewing other students’ code.
» Reading (a lot to read at the beginning; less later).
> Thinking about exercises in the textbooks.
- Some written exercises, mostly from the textbook.

> Small programming assignments in class (some to be
continued for homework).

~» Discussing the material with other students.




Even in lecture...

» This course is about participating, doing.

- When we are having a class discussion, you may not
always be the one to answer aloud, but try to THINK
the answer before someone else verbalizes!

» Consider Mary and Bob:
- Mary is active and engaged
> Bob just sits there “absorbing”
- Qutcomes?




Ask user for value (new way)

import java.math.BigInteger;
import java.util.Scanner;

public class Factorial_6_Scanner {
public static final int MAX = 25;

public static BigInteger factorial (int n) {
BigInteger prod = BigInteger.ONE;
for (int i=1; i<=n,; i++)
prod = prod.multiply(new BigInteger (i +""));
return prod;

}

public static void main(String[] args) ({
Scanner scanner = new Scanner (System.in);,
System.out.print ("Enter a nonnegative integer: ");
int n = scanner.nextInt();

System.out.println(n + "! = " + factorial(n) );



Ask user for value (old way)

import java.math.BigInteger;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.BufferedReader;

// omitted definition of the factorial method

public static void main(String[] args) {

BufferedReader in =
new BufferedReader

- }

new InputStreamReader (System.in));,
String line = ;
System.out.print ("Enter a positive integer: ");
try {
line = in.readLine();
} catch (IOException e) {
System.out.println("Could not read input');
}
int n = Integer.parselInt (line);
System.out.println(n + "! = " + factorial(n) );



What if a user types something wrong?

import Jjava.math.BigInteger;

public class Factorial 9 InputErrors {

public static BigInteger factorial (int n) {
if (n < 0)
throw new IllegalArgumentException();
BigInteger prod = BigInteger.ONE;
for (int 1 = 1; i <= n; i++)
prod = prod.multiply (new BigInteger(i + ""));
return prod;

public static void main(String[] args) {
Scanner scanner = new Scanner (System.in);
System.out.print ("Enter a nonnegative integer: ");

try {
int n = scanner.nextInt();
System.out.println(n + "! = " + factorial(n));

} catch (InputMismatchException e) {
System.out.println ("Must be an integer'");

} catch (IllegalArgumentException e) {
System.out.println (“"Cannot be negative'");



Java's five Exception keywords

» Discuss with the person next to you
(for two or three minutes):

> First, tell that person something she/he probably does
not know about you.

» What does each of the following mean?

» What can you say about how it is used?
o try > Run some code that might throw an exception
- if this type of exception is thrown, run the following code ...
> catch (i.e. handle the exception).
_ > Run this code at the end, whether there is an exception or not.
> finally
> | discovered something | don't know how to handle.
> throw Does anyone who called me know what to do?
> throws > This method might throw this kind of checked exception.

If it does, I'm not handling it!

Documentation for the compiler and users!



Factorial recursive

import Jjava.math.BigInteger;

public class Factorial_ 10_Recursive ({
public static final int MAX = 30,

/* Return the factorial of n */
public static BigInteger factorial (int n) {

if (n < 0)
throw new IllegalArgumentException();
if (n == 0)

return BigInteger.ONE;
return new BigInteger (n+ "") .multiply(factorial (n-1));

}

public static void main (String[] args) {
for (int i=0; i <= MAX; i++)
System.out.println(i + "! = " + factorial(i) );




Speed up Factorial Calculation with
Caching

import Jjava.math.BigInteger;

public class Factorial_ 11_Caching {
public static final int MAX = 2000,

static int count = 0, // How many values have we cached so far?
static BigInteger[] vals = new BigInteger[MAX+1]; // the cache
static { vals[0] = BigInteger.ONE; } // Static initializer

/* Return the factorial of n */
public static BigInteger factorial (int n) {
if (n < 0 || n > MAX)
throw new IllegalArgumentException();
if (n <= count) // If we have already computed it ..
return vals[n];
BigInteger val =
new BigInteger (n+ "") .multiply(factorial (n-1));
vals[n] = val; // Cache the computed value before returning it
count = n;
.__return val;

gde for main()omitted. Same as in previous example.



Interlude - From worldmag.com
WORLD Archives ... Quick Takes

MAGAZINE
ODDBALL OCCURRENCES

Bovine force

If Linda and Charles Everson Jr. had been driving just a bit faster, they mav not have
celebrated another anniversary. While celebrating their first anniversary, the Michigan
couple was driving on Highwav 150 alongside a cliff near Manson, Wash., when something fell
from above and crushed the hood of their minivan. Instead of falling rocks, it was a falling
cow. The 6oo-pound cow, which had fallen from 200 feet up, crushed the front of their
minivan, but the couple escaped unscathed. The 1-yvear-old bovine wasn't so fortunate.

THE FIERCELY INDEPENDENT VOICE OF NORTH CENTRAL WASHIMN

wenatcheew@rld.co L _

The cow heard around the world
Media milking falling-heifer story to death

The couple were driving back to their Manson hotel on Highway 150
Sunday after attending a church service in Chelan when the 6oo-pound
heifer named Michelle dropped from above and landed on the hood of
their Buick Terraza and bounced off onto the road. Everson said he was
stunned and kept on driving, repeating to himself 'T don't believeit. I
don't believeit.”



File Input/Output

import java.util.¥*;
import java.io.¥*;

public class FileIOTest {

/* Copy an input file to an output file, changing all letters to uppercase.
This approach can be used for input processing in almost any program. */
public static void main(String[] args) {

String inputFileName = '"sampleFile.txt";
String outputFileName = "upperCasedFile.txt";
try {

Scanner sc = new Scanner (new File (inputFileName));
PrintWriter out = new PrintWriter (new File (outputFileName));
while (sc.hasNextLine()){ // process one line
String line = sc.nextLine();
line = line.toUpperCase();
for (int i= 0; i< line.length(); i++)
// normally we might do something with each character in the line.
out .print (line.charAt (i));
out .println();
}
out.close();
} catch (IOException e) {
e.printStackTrace();



More File Input/Output

Essentially the
same as before

try {
Scanner sc = new Scanner (System.in);,
while (true) // until we get a valid file.

try {
System.out.print ("Enter input file name: ");
inFileName = sc.nextLine();

fileScanner = new Scanner (new File (inFileName));
break; // we have a valid file, so exit the 1loop.

} catch (FileNotFoundException e) {
System.out.println("Did not find file " + inFileName + ". Try again!'");

Essentially
the same
as before




Primitive types

Primitive Type  What It Stores

byte 8-bit integer

short 16-bit integer

int 32-bit integer

long 64-bit integer

float 32-bit floating-point
double 64-bit floating-point
char Unicode character
booTean Boolean variable

figure 1.2
Range g

The eight primitive
—128 to 127 types in Java
-32,768 to 32,767

—2,147,483,648 t0 2,147,483,647
_263 to 263 1
6 significant digits ( 10746, 10%%)

15 significant digits ( 10724, 10398

false and true

Copyright © 2006 Pearson
Addison-Wesley. All rights
1-29 reserved.



Java switch statement

figure 1.5

P

Layout of a switch
statement

1

2

3

4

5 case '{':
6 // Code to process opening symbols
7 break;

8

9 case ')':

10  case ']':

11 case '}':

12 // Code to process closing symbols
13 break;

14

15 case '\n':

16 // Code to handle newline character
17 break;

18

19  default:

20 // Code to handle other cases

21 break;

Copyright © 2006 Pearson
Addison-Wesley. All rights
1-30 reserved.




A program that uses switch

// Adapted from Java Examples in a NutShell 3rd Ed, by David Flanagan.
// The children's game FizzBuzz.

public class FizzBuzz ({
public static void main (String[] args) ({

for(int i = 1; i <= 100; i++) { // count from 1 to 100
switch(i % 35) { // What's the remainder mod 35°?
case 0: // For multiples of 35... 1 2 3 4
System.out.print ("fizzbuzz "); // print "fizzbuzz".
break; // Don't forget this statement!
case 5: case 10: case 15: // If the remainder is any of these
case 20: case 25: case 30: // then the number is a multiple of 5
System.out.print ("fizz "); // so print "fizz".
break;
case 7: case 14: case 21: case 28: // For any multiple of 7...
System.out .print ("buzz "); // print "buzz".
break;
default: // For any other number...
System.out.print(i + " "); // print the number.
break;
} 1 2 3 4 £fizz 6 buzz 8 9 fizz

) ) . 11 12 13 buzz fizz 16 17 18 19 fizz
if (1%10 == 0) System.out.println(); buzz 22 23 24 fizz 26 27 buzz 29 fizz
} 31 32 33 34 fizzbuzz 36 37 38 39 fizz
} 41 buzz 43 44 fizz 46 47 48 buzz fizz
} 51 52 53 54 fizz buzz 57 58 59 fizz
61 62 buzz 64 fizz 66 67 68 69 fizzbuzz
71 72 73 74 fizz 76 buzz 78 79 fizz
81 82 83 buzz fizz 86 87 88 89 fizz
buzz 92 93 94 fizz 96 97 buzz 99 fizz




Unit Testing

» What do you think it is?

- Testing parts of your code in isolation before putting
them all together

» Why is it a good thing?

» How do | write good test cases?
- Test all types of inputs, including boundary cases.
> Practice!

» How easy is it to do it in Eclipse?
> Fairly so, with JUnit

» | will often give you unit tests to help you write
correct code.

- Here are some to test last night’s homework...
> Check out HW1Test from:

http://svn.cs.rose-hulman.edu/repos/csse220-200830-username




In all your code:

» Write appropriate comments:
- Javadoc comments for public fields and methods.

- Explanations of anything else that is not obvious.

» Give explanatory variable and method names:
- Use name completion in Eclipse, Alt-/ to keep typing
cost low and readability high
» Use local variables and static methods (instead of
fields and non-static methods) where appropriate.
> “where appropriate” includes any place where you can'’t
explicitly justify doing otherwise.
» Use Ctrl-Shift-F in Eclipse to format your code.




Start HW 2

» Go there now




